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Flow patterns near conical stagnation points in supersonic flow have been investigated 
on the basis of potential flow. Near the conical stagnation point the nonlinear equation 
for the conical velocity potential reduces to the equation of Laplace. Solutions of the 
equation of Laplace for incompressible plane flow are then used as a guide to generate 
conical stagnation-point solutions. Apart from known types of Streamline patterns, 
such as nodes and saddle points, new types are found. Among them are oblique saddle 
points, saddle-nodes, topological nodes and topological saddle points. They may be 
used to clarify certain questions in a number of practical conical-flow problems. The 
oblique saddle point may be used to describe the inviscid flow associated with flow 
separation and also certain features of the flow over an external corner. The saddle- 
node, being structurally unstable, may fall apart into a saddle and a node. It may then 
be used to interpret the lift-off phenomenon of the singularity in the flow around a 
circular cone a t  incidence as a bifurcation. Similarly, this may be done for the appear- 
ance of a dividing streamline in the same flow a t  still higher angles of incidence, 
where a vortex system is formed a t  the leeward side of the cone. 

1. Introduction 
For three-dimensional flows of an inviscid, non-heat-conducting gas the notion of 

conical flow has been frequently used, in particular for supersonic flows past conically 
shaped bodies. I n  conical flow, the velocity and the conditions defining the state of 
the gas (pressure, density and temperature) are constant along rays emanating from a 
common point, the centre of the conical flow field. A conical flow may then be repre- 
sented on a unit sphere around this centre. The velocity vector may be decomposed 
into a radial component and a component normal to the radius. From the latter a 
velocity vector field tangent to the unit sphere may be constructed. Integration of 
this vector field yields lines on the unit sphere which will be called conical streamlines. 
Points where the tangential velocity Component vanishes will be called conical 
stagnation points. In  conical flows with entropy gradients the entropy remains 
constant along conical streamlines. Then, if in a conical stagnation point various 
conical streamlines merge, an entropy singularity or vortical singularity is formed in 
such a point. 

This idea was put forward by Ferri (1951) in relation to the supersonic flow past a 
circular cone at  incidence for which he also introduced the concept of the vortical layer 
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near the cone surface. When using linearized theory to calculate the flow field, usually 
with the aim of obtaining pressure distributions on body surfaces, conical stagnation 
points are of secondary importance. If the full nonlinear flow equations are used, how- 
ever, and numerical solution techniques become indispensable, a qualitative under- 
standing of the flow field is necessary, and attention then focuses on the flow structure 
near conical stagnation points. It is of value, therefore, to evaluate as systematically 
as possible, by means ofa  local analysis, the possible flow structures near such points, 
so that in a particular flow problem the qualitative basis for a numerical procedure 
can be selected with more certainty. Since the appearance of Ferri’s paper, investiga- 
tions of the flow near conical stagnation points show an emphasis of interest in the 
possible conical streamline patterns, and related pressure distributions near such 
points. Melnik ( 1967) constructed some approximate solutions of the nonlinear inviscid 
conical flow equations in the neighbourhood of a conical stagnation point on a body 
surface. These solutions involve entropy gradients in the flow. When the streamline 
pattern was related to the corresponding pressure distribution on the body surface, 
no unique correspondence was found. Bakker (1977) showed that for these solutions a 
unique correspondence may be obtained if the pressure distribution normal to the 
body surface is also taken into account. Both papers indicate that the presence of 
entropy gradients does not affect the qualitative behaviour of the streamline pattern 
corresponding to a given pressure distribution. This result is further confirmed in the 
special case of the conical stagnation points in the flow past slender circular cones a t  
high incidence, when calculated using slender body theory (Smith 1972)) or linearized 
theory (Bakker & Bannink 1974). 

I n  view of this, in the present paper a further study is made of conical stagnation 
points, using the assumption of potential flow. An advantage of this approach is that 
the nonlinear equations for conical flow reduce to a single second-order equation for 
the conical potential for which solutions are simpler to obtain. Moreover, in a conical 
stagnation point, this equation becomes the equation of Laplace, which is also satis- 
fied by the velocity potential for an incompressible plane flow. Stagnation-point 
solutions for incompressible plane flows are then used as a guide to solutions near 
conical stagnation points. Also, a comparison of the two types of flows may be made by 
tracing systematically the influence of the existence of the radial velocity component 
in the case of conical flow. The analysis in the present paper reveals both known 
streamline patterns as well as new types. Particular flow problems are discussed to 
illustrate the use of the given classification. 

2. Potential flow solutions near conical stagnation points 
Consider an inviscid, non-heat-conducting perfect gas with ratio of specific heats 

y = cl,/c,. If the flow is irrotational, a velocity potential CD = @(x, y ,  x )  may be intro- 
duced, such that VCD = q = (u ,v ,w) ,  where u, v and UI are the components of the 
velocity q along the x, y and z axes in a right-handed Cartesian co-ordinate system, 
respectively. From the conservation of mass and momer\tum and the isentropic law 
it may be derived that 0 satisfies 

(a2 - u2) CDzx + (u2- 4) oyv + (a2 - w2) a)‘ze - 2uv0,y - 2uwCD.,, - 2wwCD’liz = 0) (1) 

where the speed of sound a is related to the velocity by 
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a2 = &(y-  l ) (qkax-u2-v2-  u: ), (2) 

and qmax is the maximum speed, which we assume to be constant throughout the flow 
field. Equations (1) and ( 2 )  allow velocities to be non-dimensionalized by dividing them 
by Qmax; as a result we put Qmax = I in (2). 

We will take the origin (0, 0 , O )  in the centre of the conical flow field and the positive 
x axis along the ray corresponding to the conical stagnation point. Introducing in (1) 
the conical variables 7 = y/x and < = z /x  and the conical potential F defined by 

yields 
0 = xF(7, 0, (3) 

[a2(1 + q2)  - (v - u7)21FT), + 2[a27C- (v - U 7 )  (w - 4 ) 1 4 7 , 5  
+ [ u ~ ( ~ + < ~ ) - ( w - - < ) ~ ] F C C  = 0, (4) 

u = F - 7F, - CFe, v = F7, w = FC. (5)  

where 

I n  the variables 7 and 5 the conical streamlines obey the equation 

(6) 
d< _=-- W - U <  -<F+7<FT+(1+<')Fc 
d7 8 - a ~  -TF+(~+~')F,+~{FC' 

- 

It is sometimes convenient to work with polar co-ordinates 7 = p cos 4, 5 = p sin 4, 
- co < 4 < co, p 2 0; then the velocity components become 

1 I 

P P 
u = F-pFp, v = F,cos$--F+sin+, w = F,sin(g+-F+cos+, 

and (4) can be written as 

whereas the conical streamlines obey the equation 

The direction of flow on a conical streamline may be obtained from 

or 

where t indicates time. 

7 = < = 0 and, since v = w = 0 there, (4) yields 
With the chosen co-ordinate system, the conical stagnation point is located in 

FV7 ( 0 , O )  + (0,O) = 0.  (12)  

If the velocity components are assumed to be continuous in a neighbourhood of the 
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origin, (12)  shows that (4) in this neighbourhood is approximately the equation of 
Laplace, which is also satisfied by the velocity potential @ in incompressible plane 
flow. In  polar co-ordinates, stagnation-point solutions for incompressible plane flow 
are given by 

where a,, $, are constants. They represent flows in corners with opening angles 
a: = m / n ;  thus 0 < a: < T .  The streamline patterns of these flows are well known. 

In analogy, we seek conical stagnation-point solutions of (8) in the form of the series 
expansion 

where F, is a constant, which is irrelevant in plane flow. I n  conical flow, however, F,, 
which equals the non-dimensionalized radial velocity component in the conical 
stagnation point (equation ( 5 ) ) ,  enters in the conical streamline pattern (equation (6)). 
As a result, depending on its magnitude, it may have a significant effect on this 
streamline pattern. In this paper we only consider supersonic conical stagnation points, 
so that a, < I Fol < 1, where a, is the speed of sound in the conical stagnation point. 
It may be useful to remark that positive and negative values of F, are allowed in the 
present analysis; in most practical flow situat,ions, however, F, > 0. 

If (14)  is substituted into (8) and the result ordered with respect to pourers in p,  the 
coefficient of the lowest-order term appears to be 

= anpn cos (nq5 + $,), n > 1, (13 )  

F = F,+pnFn($) +pmFm($) +o(pm), 1 < n < m, (14) 

where a, and $a are arbitrary constants. Thus this term exactlyequals the stagnation- 
point solution for plane flow (see (13) ) .  We may use the freedom, still existing in the 
choice of the co-ordinate system, to rotate the co-ordinate system around the x axis 
such that $, = 0 in (16). When the next-higher-order terms are written out, several 
cases for n and m have t o  be distinguished. After equating the coefficient of the next- 
highest-order term to zero we obtain the following: 

For1 < n < 2 :  
Fk+m2Fm = 0, n < m < 3n-2,  

FTi+m2F,  = n3(n- 1)a ,2Pi+n(n-  l)a,2F,(F~)2, m = 3n-2,  (18) 

(19) 

(20) 

n(n - 1)F,[n2 Fk + (PA)2] = 0,  m > 3n- 2, 

Fm($) = b, cos (mq5 + $,), n < m < 3n- 2, 
with the solutions 

whereas (19), when (16) is used, yields Fn($) = 0, which means that m > 377, - 2 cannot 
occur. I n  (20) and ( 2  1) b ,  and $, are arbitrary constants. 

Forn  = 2 :  
F h  + m2Fnl = 0, 2 < m < 4, 

FA + mzFm = - 2[1 -  aC2(F, - 2Fz)2] Fz - 2afz(Fo - Fz)(Fk)z, 

Fz [u: - (F, - 2F2)'] + (F, - FJ (P6)' = 0, 

(22) 

(23) 

( 2 4 )  

m = 4, 

m > 4, 
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0- 
2 4  6 

n 
FIGURE 1. Values of n and m for which Fn($) and Fm($) exist. 

with the solutions 
Fm(q5) = bmcos (mq5+$m), 2 < m < 4, (25)  

a2 F a2 (a: - Fg - 44) F,( q5) = b, cos (m$ + $,) - % - cos2q5, m = 4, (26)  
2ao Bag 

whereas (24) ,  when (16)  is used, yields F,($) = 0, which indicates that  m > 4 cannot 
occur. I n  (25), (26)  b, and $, are arbitrary constants. 

F o r n  > 2:  
FA+m2Fm = 0, n < m < n + 2 ,  (27)  

F"+m2$' m m = - 1 - 2  n(n-l)F,, m = n + 2 ,  (28)  

n ( n - l ) ( a t - F ; ) F n  = 0, m > n + 2 ,  (29) 

Fm(q5) = bmcos(m#+$m), n < m < n + 2 ,  (30) 

( 
with the solutions 

whereas (29) ,  when (16)  is used, yields F,($) = 0,  which means that m > n+ 2 cannot 
occur. I n  (30) ,  (31)  b, and $m are arbitrary constants. Figure 1 shows the values of n 
and m for which it is possible to  determine the functions Fm(q5) and Fm(q5) in the 
expansion given by (14). With the aid of the listed solutions for the conical velocity 
potential and ( 6 )  or (9) the conical streamline pattern near the conical stagnation 
point may be determined. The pressure distribution follows from the relation 

W - U i Y  
(E) = (EJ = 1-(u2+v2+w2) 1 -u; (32)  

where the zero subscript indicates conditions in the conical stagnation point. 
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3. Conical streamline pattern and pressure distribution near a conical 
stagnation point in potential flow 

3.1. Cuse 1 < n < 2 :  oblique saddle points 
Substitution of (16), (20)) (21) into (14), and (14) into (9)) leads to the equationforthe 
conical streamlines 

dp 
@ =  - na,pnsin nq5 + O(pm) ' 

nu,pn+l cos n$ - Fo p3 + O(pm+l) 
(33) 

Introducing a parameter T along the streamlines, we investigate (33) as a system in the 

The singular points of this system for p = 0 are in $ = k n / n  ( k  = 0,  1, fi 2, ...), 
which appear to be saddle points for the locally linearized system. It may be shown 
that the higher-order terms do not change the saddle-point character of these singular 
points (Andronov et ab. 1973). Retaining only the lowest-order terms in (34) yields, 
upon integration, the approximate shape of the conical streamlines 

pnsinnq5 = C, (35) 

where C is constant along a streamline. It is well known that (35) also represents the 
streamlines in an incompressible stagnation-point flow. Equation (35) represents the 
streamline pattern for a flow in a corner with an including angle a: = n/n; thus 
7712 < a < 7r for 1 < n < 2. Obviously, it is not possible to fill out a full neighbourhood 
(0  6 q5 < 27r) of the conical stagnation point with corner flows, such that the velocity 
is continuous. The conical stagnation point can therefore only occur on a body surface, 
with one or more streamlines coinciding with the body surface. 

From (7) and (14) the velocity components may be obtained as 

I u = F,-(n- l)u,pncosn#+O(pm), 

v = na,pn-lcos (n - 1) # + 0(pm- l ) ,  
w = -nu 1L pn-1 sin (n - 1)  q5 + 0(pm-l). 

The pressure distribution then follows from (32) and (36) 

The pressure attains a maximum in the conical stagnation point, and the isobars are 
to a first approximation concentric circles around the origin. In  figure 2 ( a )  the stream- 
line pattern in a corner knln < $ < ( k +  1 )  n/n is shown. The direction of flow on 
these streamlines corresponds to a, cos k.rr < 0; if a, cos k n  > 0 the flow direction 
should be reversed. This follows from ( l l ) ,  (14), (16), (20), (21) which yield 

, cos n$ -Po p + O(p"-l). x- dP pn-1 
dt 
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FIGURE 2. Oblique saddle point ( 1  < n < 2 ) ;  (a)  conical flow in a corner with angle n/n, 
a ,  cos kn < 0 ;  ( b )  pressure distribution near corner point. 

Figure 2 ( b )  gives the pressure distribution for various values of n, as obtained from 
(37). It appears that the pressure gradient a t  the conical stagnation point is singular 
for 1 < n < 2. 

3.2. Casen = 2 

Substitution of (16), (25 ) ,  (26) into (14), and (14) into (6), leads to theequationforthe 
conical streamlines 

d< - ( 2a2 + Fo) y+ (mFm sin q5 + FA cos q5)pm-l + asp3 sin 4 cos 2q5 + O(pm+l) 
& - (2a,--1~1’,)7+ ( m ~ , c o s ~ - ~ ~ s i n ~ ) p m - l + a ~ p ~ c c o s ~ c o s 2 ~ + 0 ( p m + ~ )  . (39) 

When (39) is written as a system and only the linear terms are retained, there follows 

- 

- =  d7 ( - 1 + 2 h ) 7 ,  %-= ( - 1 - 2 4 < ,  
d r  dr 

where h = a,Fgl. The eigenvalues of the coefficient matrix are therefore 

= - 1 & 2A. (41) 

We are thus led to distinguish between the cases Ihl = 4 and Ihl + 4. 

3.2.1. Case ] A /  $: $:nodes und saddle points 
I n  this case none of the eigenvalues,uc,,,is equal t o  zero and the solutions of (40) may 

be expected to give an approximation of the streamline pattern near the conical 
stagnation point. Equations ( 2 5 ) ,  (26), however, show that for 2 < m < 3, 3 < m < 4 
the function F,(Q) is not periodic with period 271; therefore it is not possible to fill out 
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A < - +  - : < h < O  h=O O < A < t  A > +  

FIGURE 3. Saddle points, nodes and starlike node (n = 2, 
( a )  conical streamlines; ( b )  isobars. 

4, rn = 3 or 4); 

a full neighbourhood of the stagnation point such that the velocity is continuous. 
For 2 < m c 3 and 3 < m < 4 parts of the solutions between streamlines may be used 
to construct flows near conical stagnation points on a body surface. If m = 3 or m = 4 
the behaviour of Fm( q5) allows the conical stagnation point to appear in the flow field 
away from a body surface. If this remains true when all higher-order terms are added, 
the point can be realized in the flow, and the character of the singularity in the stream- 
line pattern is determined by (40) (Coddington & Levinson 1955). The singularity of 
(40) is a starlike node for h = 0,  and a node with two perpendicular approach direc- 
tions for the streamlines for 0 < ] A [  < +, whereas it is a saddle point with orthogonal 
separatrices for Ihl > &. It may be observed that a large value of [ A (  corresponds to a 
value of Fo (Fo = uo = radial velocity in the conical stagnation point) which is small 
compared to a2, and represents that part of the solution which also occurs in the 
incompressible flow near a stagnation point. The flow pattern then resembles that of 
the incompressible plane flow. If IhJ is decreased, the radial velocity becomes more 
dominant such that for lhl < & the streamline pattern forms a node, which is not 
observed in incompressible plane flow. Sketches of the conical streamline pattern are 
given in figure 3 for Fo > 0; for Fo < 0 the direction of the streamlines is reversed. The 
flow direction may be obtained from 

which may be derived from ( lo) ,  (5),  (1 4) 
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From (7) ,  (14) the velocity components may be obtained: 
u = Po - a2p2 cos 2 4  - (m - l)pmPm + o(pm), 
2) = 2a,p cos 4 + (mFm cos 4 - FA sin 4)pm-l  + o(pm-I), 

w = - 2a,p sin q5 + (mFm sin 4 +FA cos $)pm-' +o(pm-l) .  
The pressure distribution then follows from ( 3 2 ) )  ( 4 3 ) :  

If lhl > 4, and thus when a saddle point singularity for the streamlines occurs, the 
pressure attains a maximum in the conical stagnation point and the isobars are to 
a first approximation concentric ellipses around the origin. Again the similarity 
with the incompressible case (and the case 1 < n < 2 )  is obvious. If 0 < Ihl < Q - the 
streamlines then have a nodal singularity- the isobars are to a first approximation 
concentric hyperbolae with asymptotes given by 

I n  the regions within the acute angle between the asymptotes the pressure is higher 
than in the conical stagnation point, whereas in the other regions the pressure is lower. 
Comparison of the isobars with the streamline pattern shows that, in the direction 
along which an infinite number of streamlines approach, the pressure shows a minimum 
a t  the conical stagnation point, whereas, in the direction along which only one stream- 
line approaches, the pressure reaches a maximum. For h = 0 the pressure does not 
change to the order my/ (y  - 1) of the distance from the conical stagnation point; this 
case actually corresponds to n > 2 and will be further discussed in $3 .3 .  

3.2.2.  Case Ih] = 4: saddle-nodes, topological saddle points, to~ological nodesf 
If Ih I = &, one of the eigenvalues pl, given by (41 ) is equal to zero and the nonlinear 

terms in ( 3 9 )  cannot be neglected when considering the streamline pattern. From ( 3 9 )  
it is clear that we should distinguish two cases: 2 < m < 4 and m = 4. 

(a )  2 < m < 4. For h = k 4 equations (14), (16), (25) show that the conical potential 
may be written as: 

(46) 

wherep = mbm/2Fo. We restrict ourselves to h = - i; the case h = 4 may be obtained 
by retaining the minus sign in (46) and replacing and II., by 4 + n/2 and $m - &wr, 
respectively. Substitution of (46) into ( 9 )  leads to the equation for the conical stream- 
lines 

F = Yo [ I -t $p2 cos 24 + -pm 2P cos (m4 + $m) + o(pm)] ,  m 

(47) 
dp - p cos2 q5 + ppm-l cos (md + 1c.,) + O(p3)  

= sin 4 cos 4 -ppm-2sin (m+ + $m) + o(pm-2) . 
Using the parameter T along the streamlines, we investigate (47) as a system in the 
(4, CT) plane, where (T = pm-, ((T 2 0) .  Then 

9 = sinq5cos4-pLasin(m4+$m)+o(~), 
dT 

d g  
- = - (m- 2 )  (T cos2 4+ (m- 2)pu2 cos (m$+ km)+ O ( ( T ~ / ( ~ - ~ ) )  . dr  

] (48) 

t The terminology for these multiplo singular points follows that used in Andronov et al. (1973). 
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A l >  0 ,  B /  <o’ 

A /  = O;B/ < 0 

A ! =  0 

A1 < 0, BI = 0 

A ! > O  

A / >  0 ,  BI> 0 

A1 < 0, Bl> 0 

B I < 0  B I =  0 B/  > 0 

(C) 

FIGURE 4. Conical streamlines and isobarsin the ( $ - q 5 L , ~ )  plane (n = 2, h = -4, 2 < m < 4). 
( a )  Flow near q5 = q51 = &rZ, 2 = 0, f 2, & 4, .... ( b )  Flow near q5 = $L = &rZ, 1 = f 1, & 3, .... 
(c)  Isobars near $ = $t  = +mZ, Z = 5 1, & 3, .... 

The singular points of this system for cr = 0 are in $ = $l = 4171 (I = 0, 1 ,  2, ...). 
Expanding with respect to $ - $t and retaining only terms up to second order yields 
from (48) 

d4  

_ -  - - ( m -  2 ) b 2 c +  2 f ~ f i -  2 )  ab(# - # i )  V +  (m- 2 )  Bra2, 

- = ab + ( -a2 + b2)  ($ - $ l )  - A ~ v -  2ab($ - $j)’ - mBl ($ - $ l )  V, dr  
dV 

d r  
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where a = sin $,, b = cos $1, A ,  = p sin (mq5, + ern), B, = p cos (mq51 + em). There are two 
cases: 1 even, a = 0, b2 = 1 and 1 odd, a2 = 1 ,  b = 0. If (49) is linearized the eigenvalues 
of the coefficient matrix are given by 

p1 = -aa2+b2, ,u2= - ( m - 2 ) b 2 .  (50) 

If 1 is even, $ = q5{, a = 0 is a saddle point, also for the nonlinear system (49). Sketches 
of the streamline pattern in the ($ - $,, a) plane are given in figure 4 (a).  The separa- 
trices make an angle w with the ($ - $,) axis, where w = 0 or tan-l {(m - 1) The 
flow direction corresponds to Fo > 0. It should be noted that only a 2 0 is of interest 
for the present investigation. If 1 is odd, (50) yields ,ul = - 1, ,u2 = 0 and higher- 
order terms cannot be neglected. Expanding (48) and retaining only terms to third 
order yields 

2 = - ($- $J -A,a-mB,($- $,) a, d r  
d a  1 (51) 

- (m - 2) Bla2- (m- 2 )  (4 - $, )2a-m(m-  2)A, (4-$ , )  8. z- 
For q5 = ${, a = 0 system (51) has a multiple equilibrium point with p1 +,uz = - 1. 
This permits us to follow the line of analysis given by Andronov et al. (1973, pp. 337- 
346). 

Take first A, + 0. Then, by the change of variables 

q 5 * =  -(q5-$l)-Ala) r*= -A,r and r * =  -7, 

we obtain from (51) 

i -- d$* - $* -,3q5*r* + 2(m- 1) 3a*"+o((q5*2+ g*2)8) ,  

dr * A1 A, 

a7 * 4 
B 

- (m - 2 )  J a * 2 +  O( ( $ * Z  + a*2)%), 
dv* -- 

from which follows that dq5*/dr* = 0 on the curve 

B 
$* = f ( ~ * )  = - q m -  1 ) - 1 a * 2 + 0 ( ~ * 3 ) ,  4 

and that on this curve 

For B, + 0, there follows k = 2 ,  and, according to theorem 65 in Andronov et al. 
(1973, p. 340), the equilibrium point is a saddle-node. It has one parabolic (nodal type) 
sector and two hyperbolic (saddle-point type) sectors. If BJA, < 0 the hyperbolic 
sectors contain a segment of the positive cr* axis and if BJA, > 0 they contain a 
segment of the negative a* axis. For B, = 0,  there follows k = 3, Ak < 0 and the 
equilibrium point is a topological saddle point, whose separatrices are directed along 
the $*, a* axes. 

For A, + 0 the streamline pattern may now be sketched in the ($ - q5,, a) plane as is 
done in figure 4 ( b ) .  The separatrices include an angle o with the (q5 - 4,) axis, where 
w = 0 or tan-l A r l ,  the latter value also indicating the approach direction for stream- 
lines in a nodal part of the singularity. The flow directions in figure 4 ( b )  correspond to 
F, > 0. It should be noted that only a 2 0 is of interest for the present investigation. 
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Now take A, = 0. Since Af + Bf = p2, and p = 0 cannot occur in the proposed 
expansion given in (46), A, = 0 implies B, + 0. Then, by the change of variables 
$* = q5-q5,, u* = cr and 7* = -7 ,  (51) becomes 

- = q5* + mBl$*a*, 
d7* 

from which it follows that dq5*/d7* = 0 on the curve 

#* =f(a*) = 0, 

and that on this curve: 

(55) 

Thus, since k = 2 ,  the equilibrium point is a saddle-node. If B, > 0, the hyperbolic 
sectors contain a segment of the positive (T* axis, if B, < Oa segment of the negative 
c* axis. The streamline pattern in the (q5 - $1, a) plane for A, = 0 is also sketched, 
figure 4 (b ) .  

The possible streamline patterns near q5 = q51, as described above, may now be used 
to determine the streamline patterns in the (7, f;) plane. Obviously, only in the case 
m = 3 the behaviour of Fm(q5) allows the conical stagnation point to appear in a flow 
field away from a body surface. If higher-order terms permit, we may then derive 
the following streamline pattern for such a conical stagnation point. We restrict the 
range of q5 to 0 < q!J < 2 7 ~ ,  thus $, = 0, $, = in-, $2 = n-, q5, = $n-. If q5 = $,(= 0) or 
q!J2 ( = n-) there is only one streamline approaching the stagnation point and for F, > 0 
the streamline is directed towards this point. If $ = q5, ( = tn-) or q5, (gn-) there are two 
possibilities : there is either only one streamline approaching the stagnation point and 
for F, > 0 this streamline flows away from this point (B, >/ 0 ) ,  or there are an infinite 
number of streamlines flowing towards the stagnation point (F, > 0, B, < 0). Since, 
moreover, for m = 3, B, = -B,,  there are three possibilities: (i) B, < 0, B, > 0, 
(ii) B, = 0, B3 = 0, (iii) B, > 0, B, < 0. This leads to two types of streamline patterns: 
( 1 )  topological saddle points (B,  = B, = 0 ) ,  ( 2 )  saddle-nodes (B,  + 0, B, 0). Sketches 
of these flow patterns are given in figure 5 ( a )  with flow directions corresponding to 
F,  > 0. 

If 2 < m < 3, 3 < m < 4 equation (46) shows that it is not possible to fill out a full 
neighbourhood of the conical stagnation point with these solutions, such that the 
velocity is continuous. Parts of these solutions may be used, however, to construct 
flows near a conical stagnation point on a body surface. It may easily be seen that the 
maximum sector through which such a solution can be extended is equal to gn-; with- 
out loss of generality we may take 0 < $ < gn-. From figure 4 it  may become apparent 
that four relevant combinations of B, and B, can be made: (i) B, < 0, B, < 0, (ii) 
B, < 0, B, 2 0, (iii) B, 2 0, B, < 0, (iv) B, 2 0, B, >/ 0. The corresponding stream- 
line patterns for F, > 0 are shown in figure 6(a ) .  They may be called a partial topo- 
logical node, a partial saddle-node, a partial topological saddle-node and a partial 
topological saddle, respectively. 
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B ,  <o ,  I!&> 0 B ,  = O,E,= 0 

FIGURE 5 .  Saddle-nodes and topological saddle (n = 2, h = - 4, m = 3) ; 
( a )  conical streamlines; ( b )  isobars. 

We now come to the determination of the isobars corresponding to the established 
streamline patterns. From (7) ,  (46) the velocity components may be obtained as 

m- 1 
m u = uo [ 1 + &p2 cos 24- 2-p~" cos (m#+ $") + o(pm)],  

'u = uo[ - p c o ~ q 5 + 2 p p ~ - ~ ~ o ~ { ( m -  l ) $ + $ m } + o ( p m - l ) ] ,  

w = uo [p sin q5 - 2ppm-lsin {(m - 1) q5 + Ilr,} + o(pl".-l)], 

and for the pressure distribution there follows 

where G(#,p) = p2~~~2#-2ppm[2cosq5cos( (m-  i)#+$m}-(l/m) co~(mq5+$~)].The 
isobars are, in first approximation, given by the lines G = constant, which are easier 
to analyse as solutions of the differential equation 

(60) 

(61) 

aG/a$ p sin $ cos # + ppm-l f '( q5) - -- = 

where 
1 
m f(#) = 2cos#cos [(m- 1) q5 + 3hm] --cos (m# + $"). 

Introducing a parameter r along the isobars, we may investigate (60) as a system in the 
(#, a) plane, where a = pm-2 (a 2 0). Then 

- dq5 = coszq5-pmaf(#), 
dr 
d g  - (m- 2) asin # cos # +p(m - 2) azf'($). iG- 

P L M  105 
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* B,=O,B,>O 

FIGURE 6. Partial topological node, partial saddle-nodes, partial topological saddle (n = 2, 
h = -+, 2 < m < 4, m + 3) .  ( a )  Conical streamlines. ( b )  Isobars. 

The singular points of this system for G = 0 are in $6 = $61 = &r (1 = 
Expanding with respect to $6 - q5, and retaining terms to the third order yields 

1, 5 3, ...). 

= B,G+ mA,G($6 - $ 6 ~ )  + ($6 - 4~)'- im(4  - 3m) B,fl($ - $6~)', 

dG - = - (m- 2)A,a2-  (m- 2 )  ~ ( $ 6  - $61)  + (m- 2 )  (4- 3m) B,G'($~- $ 6 l ) .  
dr  

For B, + 0 the eigenvalues of the linearized system are equal to zero and, as before, 
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we will follow the line of analysis given in Andronov et al. (1973, pp. 346-369), to in- 
vestigate the integral paths of (63). For that purpose we divide the right-hand sides 
of (63) by Bl. For the curve on which dq5/dr = 0 may be found 

(64) 
1 

= - ~ ( $ - q 5 1 ) 2 + O ( ( $ - q 5 ~ ) 3 ) ,  

and on this curve there is 

(65) 
drr m-2  
dT - = A, (4 - q5dk + O{($ - $,)"+'> = -@- (q5 - $J3 + O M  - 9J4h 

Hence, it follows that k = 3 and theorem 66 in Andronov et al. (1973, p. 357) may be 
applied. As a result the equilibrium point appears to be a topological saddle point. 
Sketches of the isobars in the (q5 - q51, a) plane are given in figure 4 (c). 

For B, = 0, (63) may be integrated to yield 

(2AIa+q5-q51)a21(m-2)(q5-$1) = c, (66) 

where C is constant along an isobar. The isobars for this case are also given in figure 
4 ( c ) .  The singularity involves six hyperbolic sectors and separatrices along the 
($-& axis, the a axis and the line a = - (q5-q5,)/2Al (A ,  + 0 since B, = 0 and 
A; + B; + 0 ) .  It should be noted that only a 2 0 is of interest in this investigation. 

The isobar patterns in the (q5 - q51, c) plane near q5 = q5,, as described above, may now 
be used to determine the isobars in the (a, <) plane. For m = 3 these isobar patterns 
are sketched in figure ci(b), and two types are encountered: (i) a degenerated saddle 
point B, + 0,  B3 + 0, (ii) a topological saddle point B, = B, = 0. For 2 < m < 4 
(m $1 3) the isobar patterns are sketched in figure 6 ( b ) .  In  figures 5 ( b )  and 6 (b )  regions 
with a pressure higher than in the stagnation point are indicated by a plus sign, whereas 
a lower pressure is indicated by a minus sign. 

(b )  m = 4. For h = & Q equations (14), (16), (26) show that the conical potential 
may be written as 

F = F,[I Q P ~ C O ~ Z ~ + ~ ~ { ~ ~ C O S ( ~ ~ + ~ ~ ) - - ~ ~ T ~ ~ ( ~ - Z ~ M ~ ) C O S ~ ~ ~ } + O ( ~ ~ ) ~ ,  (67) 

where p = mbm/2Fo = 2b,/F,, and Mo = Fo/ao is the Mach number in the conical 
stagnation point. We restrict ourselves to h = - 4, since the results for h = + + may 
be obtained by replacing q5 by $ + 4. while retaining the lower sign in (67). Substitu- 
tion of (67) into (6) leads to the equation for the streamlines 

where 01, p and yk are constants depending on M,, ,u and $4. Since the point a = 6 = 0 
is a multiple equilibrium point, which may be analysed similarly to  previous cases, 
only 01 = ,u sin $, and /3 = *( 1 + iW:) + 2,u cos $4 are of importance for this analysis. 
Applying theorem 65 of Andronov et al. (1973, p. 340), we find that the point is a 
topological node for /3 < 0 and a topological saddle point for /3 > 0. For /3 = 0 and 
01 $; 0, again a topological saddle point occurs. The case /3 = 0 and 01 = 0 cannot be 
considered without taking into account higher-order terms in the expansion for F .  

9-2 
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FIGURE 7. Topological node and topological saddle (n = 2, h = - $, m = 4). ( a )  Conical 
streamlines. ( b )  Isobars. 

The isobars are the integral paths of the differential equation 

3 

(69) 
r+  c 8 k r 3 - k 5 k + 0 ( p 3 )  3= k=O 

d r  -5ay3+( i  - ~ p ) r z ~ + 3 ~ ~ 5 2 - ~ P 5 3 + ~ ( p 3 ) y  

where 8, are constants depending on M,, ,u and $4; they are not of importance for the 
analysis. Following again Andronov et al. (1973), theorem 66 (p. 357) yields that for 
p < 0 and for p = 0 but a =+ 0 the isobars form a topological saddle point, whereas 
for p > 0 a centre point singularity occurs. Streamline patterns for Fo > 0 and isobars 
are sketched in figure 7. 

3.2.3. Stability of theJEow solutions for  n = 2 

The singularities in the streamline patterns discussed in the previous sections can be 
divided into two classes. On the one hand there are the structurally stable singularities, 
corresponding to Ihl + $, and consisting of nodes and saddle points. They are struc- 
turally stable in the sense that small changes in the flow problem by changing the 
boundary conditions in general result in a small variation of A ,  which leaves the 
character of the singularity invariant. 

The second class of singularities, containing saddle-nodes, topological saddles and 
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topological nodes, is found for Ihl = 4. These are structurally unstable; small changes 
will cause bifurcation, as a result of which the topological character of the streamline 
pattern changes (Andronov et al. 1971). This may occur by the generation of several 
singularities of the first class or the complete disappearance of the singularity. 

3.3. Case n > 2: star-like nodes 

Substitution of (16)) (30), (31) into (14), and (14) into (9) leads to the equation for the 
conical streamlines 

(70) 
dp - Fo p3 + na,pn+l cos n$ + O(pm+l) 
@ =  - n a n p  sin n$ + O(pm)  ’ 

which, in fact, is equal to (33) for the case 1 < n < 2. Comparison of (33) and (70), 
however, shows the dominant influence of the (radial) velocity component F, in the 
conical stagnation point in the case n > 2. Introducing the parameter T along the 
streamlines, we investigate (70) as a system in the ($, a) plane, wherea = pn-2 (a 2 0) .  
Then 

The line a = 
any point of 

1, _ -  a - - nu, sin n$ + 0 (a(m-n)/(n-2) 
a7 

d a  
- - (n - 2) F, + n(n - 2) a, a cos n$ + O(~l+(m-~) / (n -2 ) ) .  z-  

0 thus contains only regular points of (71)’ as a result of which through 
’ this line there exists a single integral curve of (71). Correspondingly, in 

the (q,<) plane, there is one and only one streamline approaching the origin in any 
direction within a sector near the conical stagnation point. It is natural from (70) to 
consider sectors with an opening angle which is a multiple of a = nlnrad;  thus 
0 < a < 7r/2 for n > 2. 

If n is not an integer, it is not possible to fill out a full neighbourhood of the conical 
st,agnation point with these sectors, such that the velocity is continuous. Such flows 
may therefore only be obtained near a conical stagnation point on a body surface. 
Conical stagnation points away from a body surface can only occur if n is an integer. 
Sketches of the streamline patterns are given in figure 8 (F, > 0). 

Substituting (16)’ (30) into (14) and using (7)’ we obtain for the pressure distribu- 
tion’from (32)’ 

The isobar pattern resulting from (72) shows a saddle character and is also sketched in 
figure 8. Comparison with the incompressible plane stagnation-point solution, which 
is a saddle-point-type flow in a corner with opening angle less than in rad, shows that 
the dominance of Fo makes such a flow impossible in conical stagnation-point flows. 
It should be stressed, however, that  this result is obtained under the assumption of 
potential flow and need not be valid in flows with entropy gradients. I n  fact, prelimin- 
ary calculations show that such corner flows with entropy gradients exist. They may 
probably be used, in conjunction with oblique saddle-point flows, to  describe the flow 
structure near flow separation from a body surface such as the flow past a circular 
cone at  high angles of incidence. This structure was investigated by Fletcher (1975)’ 
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( k  + I h i n  ( k  + I f  a/n 

(a )  ( h )  

FIGURE 8. Starlike node (n > 2 ) ;  ( a )  conical streamlines; ( b )  isobars. 

Bannink & Nebbeling (1978), McRae & Hussaini (1978) and Nebbeling & Bannink 
(1978). 

An example of the singularity for n > 2 is the conical stagnation point in a parallel 
flow (then a, = 0) .  The isobars in figure 8 ( b )  do not apply in this case since the pressure 
is constant throughout the flow field. 

4. Discussion 
In  order to illustrate the use of the classification of flows near conical stagnation 

points we discuss two flow problems: the supersonic flow past a symmetric external 
axial corner, and the flow past a circular cone a t  incidence. 

An external corner may be formed by two intersecting wedges. In  the symmetric 
case, where both wedge angles are equal and the leading-edge sweep of the wedges is 
the same, experiments and numerical calculations indicate that the conical flow 
pattern may be as sketched in figure 9 (a). 

An oblique saddle point as discussed in $ 3.1 may be observed in the corner point 8. 
The nodal conical stagnation points Nl and N, belong to the class treated in $3.2 
(figure3,O < IhJ < t). 

The external corner flow was examined numerically by Kutler & Shankar (1976), 
Kutler, Pulliam & Vigneron (1979), and by Salas (1979). A local analysis near the 
corner point was given by Salas & Daywitt (1978) on the basis of the assumption that 
the velocity and the pressure gradient a t  the corner point are regular. However, if the 
including angle of the separatrices of an oblique saddle point lies between in and rr 
radians, the solutions in the present investigation (equation (37)) have a singular 
pressure gradient at the corner point, which is also indicated by the numerical results 
of Kutler et al. (1979) and Salas (1979). In  figure 9 (b) the results of the latter have been 
compared with an experimental pressure distribution obtained by the present authors 
on one face of a symmetric corner a t  conditions indicated in the figure. Both pressure 
distributions reveal clearly a minimum a t  the conical stagnation point N,, wh_icb, 
according to 8 3.2.1, figure 3, is characteristic for a nodal singularity with an infinite 
number of streamlines tangent to the body surface. The slight discrepancy between 
the experimental and theoretical data can mainly be explained by the small differences 
in flow conditions between the two cases. 

I n  the inviscid supersonic flow past a circular cone at incidence several conical 
stagnation points may be observed. For a range of positive angles of incidence, with 
the exception of the lift-off angle, conical flow patterns are sketched in figure 10; 
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FIGURE 9. Conical flow past a symmetric external axial corner consisting of two intersecting 
wedges. (a) Conical streamlines with nodes N,, N, and saddle point S. ( b )  Pressure distribution 
along surface. 0, experiment, free-stream Mach number, M ,  = 2.95, wedge angle of corner 
surface 6 = 10*3", leading-edge sweep A = 0; -, numerical results of Salas (1979), M ,  = 3, 
6 = IO",R = 0. 

they contain saddle points and nodes which belong to the class n = 2 ,  ] A (  += Q ( 5  3.2.1). 
These nodes and saddle points axe well known from the literature on conical flow; 
in fact they already appear in one of the first papers on this subject (Ferri 1951). 
Particular attention has been given to the conical stagnation points in the leeward 
symmetry plane of the flow field. The change with incidence of the nodal character of 
this point on the body surface is discussed in several references, viz. Melnik (19671, 
Smith (1972), Bakker & Bannink (1974) and Bakker (1977). 
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(a ) 

Increasing angle of incidence - 

FIGURE 10. Inviscid conical flow past a circular cone at incidence; in A : ( a )  node tangential to 
cone surface, (b)  starlike node, (c) node normal to cone surface, ( d )  saddle point (lift-off). 

FIGURE 11. Inviscid conical flow past a circular cone a t  incidences near lift-off of singularity in A ; 
incidence: ( a )  smaller than a t  lift-off, (b)  a t  lift-off, (c) larger than at lift-off. 

At high incidences lift-off of the singularity occurs (figure lOd), as already suggested 
by Ferri (1951). The lift-off phenomenon requires attention to the singularities 
found for Ih( = treatedin 33.2.2,  and may then be viewed as a bifurcation phenom- 
enon; this process is represented in figure 1 1. 

At the lift-off angle of incidence, the conical stagnation point a t  the body surface 
in the leeward symmetry plane would be a saddle-node. The nodal part would be 
formed by the streamlines outside the body surface. The saddle part would be found 
if the flow around the body is extended inside the body. 

Increasing the incidence beyond the lift-off angle makes the saddle-node fall apart 
into a saddle point attached to the cone surface and a node moving away from the 
body. Decreasing the angle of incidence below the lift-off angle would leave a nodal 
point on the cone surface and create a saddle point in the solution extended inside the 
cone. The calculations made by Bakker & Bannink (1974) to investigate conical 
stagnation points within the framework of slender-body theory may be used to  sup- 
port the conjecture that lift-off is a bifurcation phenomenon. 

I n  experiments viscosity tends to obscure the lift-off phenomenon, which starts at 
the body surface where boundary-layer effects are dominant. In  the experiments 
reported by Nebbeling & Bannink (1978) and (in an extension) by Bannink & 
Nebbeling (1978) it was shown that in the supersonic flow past slender cones a t  high 
incidences flow separation leads to the generation of a vortex system on the leeward 
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(a) (b  ) (C) 

FIGURE 12. Conical flow past a circular cone a t  incidence, experimental observations. Bifurca- 
tion of a saddle-node (S-N) into a saddle ( S )  and a node ( N ) ;  incidence: ( a )  smaller than at 
bifurcation, ( b )  a t  bifurcation, (c )  larger than a.t bifurcation. 

side of the cone. When increasing the angle of incidence of a cone, with a semi-apex 
angle of 7.5" in a supersonic flow with Mach number 2.94, from 17' to 22" another 
bifurcation phenomenon may be used to explain the appearance of a dividing stream- 
line in the flow. This development has been depicted in figure 12, where the subsequent 
stages are shown a t  increasing angles of incidence. 

According to Andronov et al. (1971) there are two ways in which a saddle-node may 
bifurcate. The first possibility is its falling apart into two structurally stable singul- 
arities and the other is its disappearance leaving no singularity a t  all. 

The existence of the dividing streamline and the related saddle point in the leeward 
symmetry plane, accompanied by a nodal conical stagnation point higher above the 
cone surface (figure 12c), as was observed in the experiments by Bannink & Nebbeling 
(1978), may then be understood as a bifurcation from a saddle-node singularity 
(figure 12b) appearing a t  some angle of incidence between 17" and 22'. Below this 
angle of incidence the saddle-node of figure 12 ( b )  has disappeared (figure 12a)  and a 
conical flow field without a dividing streamline occurs. 
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